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This article reports an inverse analysis of a transient conduction–radiation problem with variable thermal
conductivity. Simultaneous retrieval of parameters is accomplished by minimizing the objective function
represented by the square of the difference between the measured and the assumed temperature fields.
The measured temperature field is calculated from the direct method involving the lattice Boltzmann
method (LBM) and the finite volume method (FVM). In the direct method, the FVM is used to obtain
the radiative information and the LBM is used to solve the energy equation. With perturbations imposed
on the measured temperature data, minimization of the objective function is achieved with the help of
the genetic algorithm (GA). The accuracies of the retrieved parameters have been studied for the effects
of the genetic parameters such as the crossover and the mutation rates, the population size, the number
of generations and the effect of noise on the measured temperature data. A good estimation of parame-
ters has been obtained.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Analysis of a heat transfer problem generally involves determi-
nation of temperature and/or heat flux distributions from the
knowledge of medium properties, and initial and boundary condi-
tions. Such problems are known as direct problems. They are math-
ematically well-posed, and established methods are available for
their solutions. However, in many situations, the knowledge about
the temperature and/or heat flux distribution is available, but
either the medium properties or the boundary conditions are un-
known. Problems of this kind fall under the domain of inverse
problems. They are mathematically ill-posed, and their solutions
require either some kind of regularization or an efficient optimiza-
tion method.

Inverse problems find applications in design and analysis of
many devices such as furnaces, combustors, turbomachinery, heat-
ers and radiators, etc. The Laplace transform method, the finite ele-
ment method in conjunction with the least-squares method was
employed by Chen and Chang [1] to estimate surface heat flux/
temperature from measured temperature inside the solid in an in-
verse heat conduction problem. Wang et al. [2] have carried out an
ll rights reserved.
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inverse analysis for turbomachinery blading. Liu and Jiang [3]
reconstructed temperature profiles in flames in a combustion
study. They used Gauss–Jordan elimination method in the inverse
analysis. Erturk et al. [4] have determined the boundary conditions
for a radiative enclosure using the conjugate gradient method. Beh-
bahani-nia and Kowsary [5] have estimated heat flux profiles using
dual reciprocity boundary element along with sequential function
specification scheme. Transient heat source reconstruction from
temperature measurements using the Bayesian approach was car-
ried out by Wang and Zabaras [6]. Huang and Wu [7] estimated the
temperature at the base of the fin using iterative conjugate gradi-
ent method. Woodfield et al. [8] estimated the heat flux using in-
verse Laplace transformation. Kolehmainen et al. [9] used semi-
discrete finite element approximation in conjunction with the
Bayesian approach to estimate the heat capacity and the thermal
conductivity in a tomographic inverse problem. Lin and Yang
[10] determined the strength of the heat source in Fourier and
non-Fourier heat conduction problems. They used the finite differ-
ence method and the modified Newton–Raphson method. Chiang
and Chen [11] applied grey prediction to estimate thermal conduc-
tivity in heat conduction problem. Liu [12] estimated the heat
source in a conduction problem using genetic algorithm (GA).

In a conduction–radiation problem, the solution of the energy
equation can be accomplished by methods such as the finite ele-
ment method [13], the finite difference method (FDM) [14], the fi-
nite volume method (FVM) [15] and the lattice Boltzmann method
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Nomenclature

a anisotropy factor
cp specific heat at constant pressure
e propagation speed ðDx

DtÞ
fi particle distribution function in the i-direction
f eq
i equilibrium particle distribution function in the i-direc-

tion
G incident radiation
I intensity
J objective function
k thermal conductivity
M number of rays
n total number lattices/control volumes
q heat flux
S source term
t dimensional time
T dimensional temperature
X length of the geometry
x space variable

Greek symbols
a thermal diffusivity
b extinction coefficient
c coefficient for variation in thermal conductivity
c
0

variable thermal conductivity parameter

g non-dimensional distance
d polar angle
e emissivity
h non-dimensional temperature
ja absorption coefficient
X solid angle
q density
r Stefan–Boltzmann constant, 5.67 � 10�8 W/m2 K4

rs scattering coefficient
s relaxation time in the LBM
x scattering albedo
n non-dimensional time

Superscript
� non-dimensional variable
m index for direction

Subscripts
b boundary
C conductive
p index for lattice node
R radiative
E, W east, west
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(LBM) [16]. The radiative information required in the problem can
be obtained by methods such as the discrete ordinate method
(DOM) [17], the discrete transfer method (DTM) [17], the spherical
harmonics method [17] and the finite volume method (FVM) [18].
It is observed that most of the available studies involving conduc-
tion–radiation heat transfer assume the thermal conductivity to be
constant and its variation with the temperature is neglected. How-
ever, this assumption fails if there is a large temperature difference
in the medium. Chu and Tseng [19] and Talukdar and Mishra [20]
have considered the effect of variable thermal conductivity in a
conduction–radiation problem. To compute the radiative informa-
tion, they have used the DOM and the DTM, respectively. The FDM
was used for the solution of the energy equation. The consideration
of temperature dependent thermal conductivity increases the non-
linearity in the energy equation and the solution of the same be-
comes more complex [19,20].

In the domain of inverse problems, a transient conduction–radi-
ation problem involving the effect of variable thermal conductivity
has not been investigated so far. Therefore, in the present work, we
perform an inverse analysis for parameter retrieval in a transient
conduction–radiation problem with variable thermal conductivity.
For the computation of the radiative information, the FVM [18] is a
robust method. In fluid mechanics and heat transfer, the usage of
the LBM [21,22] has been found promising. Thus, in the present
work, in the direct method, we use the LBM–FVM combination to ob-
tain the temperature field. The divergence of the radiative heat flux is
computed using the FVM and the LBM is employed to solve the en-
ergy equation. The temperature field obtained in the direct method
is taken as the exact (measured) temperature data in the inverse
analysis. A set of two parameters such as the extinction coefficient
along and the conduction–radiation parameter, the extinction coef-
ficient and the scattering albedo, and the conduction–radiation
parameter and the scattering albedo are simultaneously estimated
by minimizing the objective function. The GA [6,10–12,23] is an effi-
cient optimization tool, therefore, in the present work, the same is
used for the minimization of the objective function.
2. Formulation

Consider an absorbing, emitting and scattering planar medium
(Fig. 1). The initial temperature of the system is TE. For time t > 0,
the west boundary is maintained at a higher temperature TW > TE.
The thermal conductivity k of the medium is assumed to vary with
temperature according to the following expression,

k ¼ k0 þ c0ðT � TWÞ ð1Þ

where c0 is the variable thermal conductivity parameter. The energy
equation for the problem under consideration is given by,

qCp
@T
@t
¼ � @

@x
�k

@T
@x

� �
� @qR

@x
ð2Þ

Substituting for k from Eq. (1) into Eq. (2), we get,

qCp
@T
@t
¼ k0 þ c0ðT � TW Þ½ � @

2T
@x2 þ c0
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@x

� �2

� @qR

@x
ð3Þ

If in non-dimensional form, we define, time n, distance g, tempera-
ture h, radiative heat flux WR, coefficient of variation in thermal con-
ductivity c, conduction–radiation parameter N and incident
radiation G* in the following way,

n ¼ ab2t g ¼ bx h ¼ T
TW

WR ¼
qR

rT4
W

c ¼ c0TW N
k0

N ¼ k0b

4rT3
W
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rT4
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ð4Þ

Eq. (3) can be written in non-dimensional form as
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In Eq. (5), the divergence of the radiative heat flux is given by,

@WR

@g
¼ 4ð1�xÞ h4 � G�

4p

� �
ð6Þ



Fig. 1. Schematic of the 1-D planar geometry under consideration along with D1Q2 lattice of the LBM and control volume of the FVM.

Table 1
Effect of number of lattices/control volumes in the direct method (LBM–FVM) and
number of directions in the FVM on the variation of steady state (SS) temperature h;
eE = eW = 1.0, b = 1.0, x = 0.5, N = 0.01, c = 0.50.

Control volumes/
lattices

Number of directions Md Non-dimensional location

g = 0.20 g = 0.40 g = 0.80

Effect of control volumes/lattices
25 12 0.9019 0.8247 0.6439
50 12 0.8928 0.8401 0.6937

100 12 0.8905 0.8550 0.7392
200 12 0.8900 0.8596 0.7486

Effect of number of directions Md

100 6 0.8377 0.8036 0.7023
100 12 0.8905 0.8550 0.7392
100 24 0.9045 0.8643 0.7429

Fig. 2. Validation of the SS temperature h distribution computed in the present
work for the direct problem with that of Talukdar and Mishra [20] for different
values of c; N = 0.50, b = 0.1, x = 0.50, eE = 1.0, eW = 0.50.
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In the present work, we compute @WR
@g using the FVM and the LBM is

employed to compute the temperature field in both the direct and
the inverse methods. In the inverse method, the optimization is
achieved using the GA. Below we provide a brief formulation of
the FVM, the LBM and the GA.

2.1. Finite volume method

For a participating medium, the radiative transfer equation in
any discrete direction dj having direction index j is given by [17,18]

dIj

dsj
¼ �bIj þ Sj ð7Þ

where Ij is the intensity in the discrete direction dj (where d is the
polar angle). The source term Sj for an absorbing, emitting and
anisotropically scattering medium in which anisotropy is approxi-
mated by linear anisotropic phase function (p = 1 + acosd cosd

0
) is

given by

Sj ¼ bð1�xÞ rT4

p

 !
þ bx

4p
ðGþ a cos djqRÞ ð8Þ

In Eq. (8), the incident radiation G and net heat flux qR are given by
and computed from the following:

G ¼ 2p
Z p

d¼0
I sin ddd � 4p

XM

j¼1

Ij sin dj sin
Ddj

2

 !
ð9Þ

qR ¼ 2p
Z p

d¼0
I cos d sin ddd � 2p

XM

j¼1

Ij sin dj cos dj sinðDdjÞ ð10Þ

where M is the number of discrete points considered over the com-
plete span of the polar angle d (0 6 d 6 p).

In the FVM, for a planar medium, Eq. (7) is resolved along the x-
direction and it is integrated over the elemental solid-angle DX to
provide

@Ij

@x
Dj

x ¼ �bIjDXj þ SjDXj ð11Þ

In Eq. (11), Dj
x and DXj are given by

Dj
x ¼ 2p sin dj cos dj sinðDdjÞ ð12Þ

DXj ¼ 4p sin dj sin
Ddj

2

 !
ð13Þ

Integrating Eq. (11) over a 1-D control volume, we get

ðIj
E � Ij

WÞD
j
x ¼ �bIj

PdxDXj þ Sj
PdxDXj ð14Þ

where Ij
E and Ij

W are the intensities at the east and the west cell
boundaries and Ij

P and Sj
P are the intensity and the source term at

the cell centre P in a given direction having index j. If the cell cen-
tres intensity Ij
P ¼ ðI

j
E þ Ij

WÞ=2 then in terms of known intensities, it
can be written as

Ij
P ¼

2Dj
xIj

W
þSj

P
DXjdx

2Dj
xþbDXjdx

;Dj
x > 0

2jDj
x jI

j
E
þSj

P
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2jDj
x jþbDXjdx
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x < 0

8><
>: ð15Þ

While marching from any of the two boundaries, knowledge of the
boundary intensity is required, and this for a diffuse-gray boundary
having temperature Tb and emissivity �b, is computed from
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Ib ¼
ebrT4

b

p
þ 1� eb

p

� �
2p
XM=2

j¼1

Ij sin dj cos dj sinðDdjÞ ð16Þ
2.2. Lattice Boltzmann method

For a planar medium, with D1Q2 lattice, the discrete Boltzmann
equation with the Bhatanagar–Gross–Krook approximation is gi-
ven by [21,22],

@fiðx; tÞ
@t

þ eir:fiðx; tÞ ¼ �
1
s

fiðx; tÞ � f 0
i ðx; tÞ

� �
i ¼ 1 and 2 ð17Þ
Table 2
Effect of crossover and mutation rates on the simultaneous retrieval of parameters for
a population size of 100; eE = eW = 1.0, c = 0.50.

Exact values (Pc,Pm) (±E) Estimated values % Error

(N,b) = (0.01,1.0) x = 0.50 (0.3, 0.3) 0.0 (0.0124, 1.1935) (24.0, 19.35)
1.0 (0.0067, 0.7938) (�33.0, 20.62)
2.0 (0.0157, 1.3259) (57.0, 32.59)

(0.8, 0.03) 0.0 (0.0105, 1.0581) (5.0, 5.81)
1.0 (0.011, 0.9011) (10.0, �9.89)
2.0 (0.0082, 0.8584) (�18.0, �14.16)

(N,x) = (0.01,0.5)
b = 1.0

(0.8, 0.03) 0.0 (0.0097, 0.5481) (�3.0, 9.62)
1.0 (0.0081, 0.6039) (�19.0, 20.78)
2.0 (0.0128, 0.3673) (28.0, �26.54)

(b,x) = (1.0,0.5) N = 0.01 (0.8, 0.03) 0.0 (0.9673, 0.4705) (�3.27, �5.90)
1.0 (0.8903, 0.5806) (�10.97, 16.12)
2.0 (1.2932, 0.3890) (29.32, �22.2)
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Fig. 3. Comparison of the effect of crossover probability Pc and mutation probability
measurement errors, (a) E = 0.0 (b) E = 1.0 and (c) E = 2.0; N = 0.01, b = 1.0, e = 1.0, c = 0.5
where fi is the particle distribution function, f 0
i is equilibrium parti-

cle distribution function, ei is the velocity and s is the relaxation
time which for the D1Q2 lattice used in a 1-D planar medium
(Fig. 1) is given by [21,22],

s ¼ a
jeij2
þ Dt

2
ð18Þ

For the D1Q2 lattice, the two velocities and their corresponding
weights are given by

ei ¼
Dx
Dt

; e2 ¼ �
Dx
Dt

ð19Þ

w1 ¼ w2 ¼
1
2

ð20Þ

After discretization, Eq. (17) can be written as,

f ðxþ eiDt; t þ DtÞ ¼ fiðx; tÞ �
Dt
s fiðx; tÞ � f 0

i ðx; tÞ
� �

ð21Þ

To account for the volumetric radiation, Eq. (21) gets modified to
[16],

fiðxþ eiDt; t þ DtÞ ¼ fiðx; tÞ �
Dt
s
½fiðx; tÞ � f 0

i ðx; tÞ� �
Dtwi

qcp

@qR

@x
ð22Þ

Once the fi over all directions are known, temperature is obtained
from the following:

Tðx; tÞ ¼
X
i¼1;2

fiðx; tÞ ð23Þ

To process Eq. (22), knowledge of equilibrium particle distribution
function is required and this is given by,
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0 and x = 0.50 (estimated values: N and b).
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f 0
i ðx; tÞ ¼ wiTðx; tÞ ð24Þ

To account for the temperature dependent thermal conductivity
(Eq. (1)), the expression for the relaxation time in Eq. (18) is modi-
fied as,

s ¼ k=qcp

jeij2
þ Dt

2
¼ k0 þ c0ðT � TWÞ

qcpjeij2
þ Dt

2

¼ k0

qcpjeij2
þ c0

qcpjeij2
ðT � TWÞ þ

Dt
2

ð25Þ

Using non-dimensional parameters as defined in Eqs. (4) and (22)
can be written as,

f �i ðgþ e�i Dn; nþ DnÞ ¼ f �i ðg; nÞ �
Dn
s�

f �i ðg; nÞ � f �0i ðg; nÞ
� �

� Dnwi

4N
@WR

@g
ð26Þ

In Eq. (26), the radiative information @WR
@g is calculated from Eq. (6). In

non-dimensional form the relaxation time s* is given by,

s� ¼ 1

ðDx�=DnÞ2
þ c
ðDx�=DnÞ2

ðh� hWÞ þ
Dn
2

ð27Þ

The details of the solution procedure and the implementation of
boundary conditions in the LBM are given in [16] and the same
are not repeated here.

2.3. Genetic algorithm

GA is an iterative optimization tool, which unlike deterministic
methods, works with a group of solutions collectively known as the
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Fig. 4. Comparison of the variation of the best fitness and number of generations for diff
N = 0.01, c = 0.50, b = 1.0, e = 1.0 and x = 0.50 (estimated values: N and x).
population. Population undergoes gradual refinements in succes-
sive generations. The process of the GA is analogous to biological
evolutions of any species in which successive generations are con-
ceived, born and raised until they themselves become ready to
reproduce. Reproduction, crossover and mutation are the three
main steps involved in the GA. After the generation of an initial
population and evaluation of its fitness, the process of reproduc-
tion starts. The generations having good fitness values are repli-
cated in the next population. Next, the crossover operation starts.
In this process, pairs from new strings mate to produce new off-
spring. The parents are replaced by the newly produced offspring.
Finally, through an assigned probability, the mutation operator
randomly changes the genes in the string. The process continues
until a satisfactory fitness value of the objective function is
attained.

In the present work, in the inverse analysis, the objective func-
tion is defined as the summation of the squares of the differences
between guessed temperature field hp and exact temperature field
~hp,

J ¼
Xn

i¼1

~hp � hp

� �2
ð28Þ

To account for the effect of measurement errors, random errors
to the exact temperature field are added. Thus the temperature
hmeasured when an error is included is expressed as:

hmeasured ¼ ~hþ E ð29Þ

where E is a random error between 0 and ±2. When there is no mea-
surement error (E = 0.0), hmeasured ¼ ~h for estimation of unknown
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parameters, the minimization of the objective function (Eq. (28)) is
required.

3. Results and discussion

In the following pages, we provide results of the inverse analy-
sis for the simultaneous retrieval of parameters. Initially the entire
system is at a temperature h(g,0) = 0.5. For time n > 0, the east
boundary is kept at the same initial temperature (hE = 0.5) and
the west boundary is maintained at a higher temperature
hW = 2hE = 1.0. In the energy equation, the non-dimensional time
step Dn = 0.0001 was considered. The steady state (SS) conditions
were assumed to have been attained when the temperature
difference between two consecutive time levels at each lattice
centre did not exceed 1.0 � 10�6.

In Table 1, we study the effect of lattices/control volumes and
number of rays on the SS temperature h distribution. For this, both
the boundaries are assumed to be black. The comparison corre-
sponds to the extinction coefficient b = 1.0, the scattering albedo
x = 0.5, the conduction–radiation parameter N = 0.01 and the coef-
ficient of variation of thermal conductivity c = 0.5. It is observed
from Table 1 that beyond 100 control volumes and 12 rays, there
is no significant change in the temperature h distributions. There-
fore, in the present work, we have provided the results considering
100 control volumes and 12 rays. It is to be noted that in the LBM,
the number of lattices remains one more than the number of
control volumes in the FVM.

In order to check the accuracy of the direct method (LBM–FVM),
in Fig. 2, we compare the SS temperature h distributions with that
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Fig. 5. Comparison of the variation of the best fitness and number of generations for diff
N = 0.01, b = 1.0, e = 1.0, c = 0.50 and x = 0.50 (estimated values: x and b).
given in Ref. [20]. The cold/east boundary is assumed to be black
and the emissivity of the hot/west boundary eW = 0.5.For extinction
coefficient b = 0.1, the scattering albedo x = 0.5 and the conduc-
tion–radiation parameter N = 0.5, this comparison has been shown
for three values of thermal conductivity parameter c = �1.0, �0.50
and 0.0. It is observed from Fig. 2 that the SS temperature h distri-
butions obtained from the direct method (LBM–FVM) compare
very well with those given in [20] in which the problem was solved
using the finite difference method involving implicit scheme and
the discrete transfer method.

In the following pages, we present the results for the inverse
analysis using the LBM–FVM in conjunction with the GA. For this
analysis, at time n > 0.0, we maintain the non-dimensional temper-
atures of the west and the east boundaries at hW = 1.0 and hE = 0.5,
respectively. For the set of parameters considered in Table 1, with
the SS temperature h distributions available from the direct meth-
od, in the inverse method, we simultaneously estimate two param-
eters, viz. (b,N), (x,N) and (b,x).

To demonstrate the workability of the LBM–FVM–GA in the in-
verse method, for a population size of 100, in Table 2 we study the
effect of the crossover probability Pc and the mutation probability
Pm on the accuracy of the simultaneous estimation of the extinc-
tion coefficient b and the conduction–radiation parameter N. For
measurement errors (±E) in the range 0–2, the effect has been stud-
ied for two cases of Pc and Pm viz. (a) lower value of crossover prob-
ability (Pc = 0.30) with a higher value of mutation probability
(Pm = 0.30) and (b) higher value of crossover probability
(Pc = 0.80) with a much lower value of mutation probability
(Pm = 0.03). It is observed from Table 2 that for the present study,
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a higher value of crossover probability (Pc = 0.80) with a much low-
er value of mutation probability (Pm = 0.03) is desirable. Thus, in
the present work, we select the Pc = 0.80 and Pm = 0.03 for simulta-
neous estimation of other sets of parameters, viz. (b,N), (x,N) and
(b,x). From Table 2, it is also seen that with Pc = 0.80 and Pm = 0.03,
the estimated values of the set of parameters (b,N), (x,N) and
(b,x) are in good agreement with the exact ones.

For parameters considered in Table 2, in order to study the ef-
fects of the crossover probability Pc and the mutation probability
Pm on the convergence rate of the best fitness and their effects
on the number of generations required for the convergence, we
Table 3
Effect of the population size on the estimation accuracy of simultaneous retrieval of
parameters; eE = eW = 1.0, c = 0.50.

Exact values Population
size

(±E) Estimated
values

% Error

(N,b) = (0.01,1.0)
x = 0.50

25 0.0 (0.0161, 1.3617) (61.0, 36.17)
1.0 (0.0022, 1.4321) (�78.0, 43.21)
2.0 (0.0014, 0.4803) (�86.0, �51.97)

100 0.0 (0.0105, 1.0581) (5.0, 5.81)
1.0 (0.011, 0.9011) (10.0, �9.89)
2.0 (0.0082, 0.8584) (�18.0, �14.16)

(N,x) = (0.01,0.50)
b = 1.0

100 0.0 (0.0097, 0.5481) (�3.0, 9.62)
1.0 (0.0081, 0.6039) (�19.0, 20.78)
2.0 (0.0128, 0.3673) (28.0, �26.54)

(b,x) = (1.0,0.50)
N = 0.01

100 0.0 (0.9673, 0.4705) (�3.27, �5.90)
1.0 (0.8903, 0.5806) (�10.97, 16.12)
2.0 (1.2932, 0.3890) (29.32, �22.2)
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Fig. 6. Comparison of the effect of the population size on the best fitness and number of
(Pc,Pm) = (0.80,0.03), N = 0.01, b = 1.0, e = 1.0, c = 0.50 and x = 0.50 (estimated values: N
present a comparison in Fig. 3. In the present work, the best fitness
is represented by the summation of the errors between the exact
temperature field ð~hÞ and the guessed temperature field (h). Since
the present work deals with a transient problem, it is to be noted
that the minimization of this objective function need to be carried
out at all the time levels including SS. For simultaneous estimation
of the extinction coefficient b and the conduction–radiation
parameter N, the comparison has been done for three different
measurement errors viz. ±E = 0.0, 1.0 and 2.0. It can be observed
that for all the measurement errors (±E), a crossover probability
Pc = 0.8 and a mutation probability Pm = 0.03 provide a minimum
value of the best fitness as compared to the other combination of
the crossover probability Pc and the mutation probability Pm, i.e.,
(Pc = 0.30, Pm = 0.30). Further, it can be noticed that in case of
(Pc,Pm) = (0.8,0.03), the attainment of the convergence is faster.
However, for other combination of Pc and Pm, i.e., (Pc = 0.30,
Pm = 0.30), it is also observed that there is no significant change
in the variation of the best fitness beyond 100 generations. Thus
in the present work, the analysis has been done for a maximum
of 100 generations.

In Fig. 4, we present the variation of the best fitness with the
number of generations for the simultaneous retrieval of the con-
duction–radiation parameter N and the scattering albedo x. The
study has been done for three measurement errors (±E = 0.0, 1.0
and 2.0). It is observed that the value of the best fitness increases
with measurement errors for a fixed number of generations (100
for the present study). It is also noticed that the convergence rate
is faster for the case involving least measurement error, i.e.,
(±E = 0.0). This can be explained in the following manner. When
the initial population contains large error, the probability that
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the GA needs large number of generations for tuning the popula-
tion towards the minimum value becomes more. On the other
hand, with the least measurement error, the probability that the
population contains more number of fitter individuals is high.
Thus, the convergence rate is faster and less number of generations
is required.

For the parameters considered in Table 2, we present the varia-
tion of the best fitness with number of generations for the simulta-
neous retrieval of the extinction coefficient b and the scattering
albedo x in Fig. 5. It is observed that for all measurement errors
(±E), the variation is similar to the one observed in Fig. 4. Thus, a
similar justification can be provided for the present case also.

In order to study the effect of population size on the accuracy of
the estimated parameters in the inverse method, we present a
comparison in Table 3. For simultaneous estimation of the extinc-
tion coefficient b and the conduction–radiation parameter N, the
study has been made for two different population sizes of 25 and
100. For different measurement errors (±E), the crossover probabil-
ity Pc and the mutation probability Pm have been taken as 0.80 and
0.03, respectively, because this combination appears to perform
better as observed from Table 2 and Figs. 3–5. It is observed from
Table 3 that a higher population size gives a more accurate value
of the retrieved parameter. This is because, the higher the popula-
tion size, the more is the probability of getting better individuals in
the population. The estimated values of the other set of parameters
viz., the scattering albedo x with the conduction–radiation param-
eter N, and the extinction coefficient b with the scattering albedo x
agrees well with that of exact ones for a population size of 100 as
observed from Table 3.
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Fig. 7. Comparison of the temperature h distributions obtained from the direct method a
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In order to study the effect of population size on the variation of
the best fitness with number of generations, we present a compar-
ison in Fig. 6. For this comparison, the same set of parameters as
assumed in Table 3 are taken. It is observed from Fig. 6 that for a
higher population size, the attainment of the convergence is faster,
i.e., it requires less number of generations for the convergence.
However, it is also noticed that the value of the best fitness is con-
siderably less for a greater population size. This establishes the fact
that, if more number of good individuals are present in the popu-
lation then the estimation accuracy also improves. It is also noticed
from Fig. 6 that for all measurement errors, there is no change in
the value of the best fitness beyond 100 generations.

For different measurement errors (±E = 0.0, 1.0 and 2.0), the var-
iation of the best fitness with the number of generations for a pop-
ulation size of 100 and (Pc,Pm) = (0.80,0.03) in case of the
simultaneous estimation of the scattering albedo x along with
the conduction–radiation parameter N and for the simultaneous
estimation of the extinction coefficient b and the scattering albedo
x has already been shown in Figs. 4 and 5, respectively. Thus, the
details of the same are not repeated here.

In order to demonstrate the accuracy of the estimated parame-
ters obtained in the inverse method, in Fig. 7, we compare temper-
ature h distributions computed using the direct method and the
inverse method. This comparison corresponds to a measurement
error ±E = 2.0. For the selected values of the crossover probability
Pc and the mutation probability Pm which in the present study is
0.80 and 0.03, respectively, it is sufficient to compare temperature
h distribution corresponding to ±E = 2.0. This is because the case
±E = 2.0 contains a maximum error in the estimated values as com-
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pared to other sets of ±E. It is observed from Fig. 7 that temperature
h distributions computed using the direct method and the inverse
method are in excellent agreement with each other.

In Fig. 8, we present the variation of the estimated parameters
with the number of generations. For all three sets of estimated
parameters viz. (N,b) = (0.01,1.0), (N,x) = (0.01,0.5) and
(b,x) = (1.0,0.5), the results are presented for the case correspond-
ing to a population size of 100, eE = eW = 1.0, c = 0.50 and (±E) = 0.0.
In each case, it is noticed that the estimated parameter undergo
gradual refinement in successive generations. At the end of 100
generations, it is also noticed from Fig. 8 that the exact and the
estimated values are in excellent agreement with each other.

In order to study the effect of the CPU time involved in the di-
rect method and the inverse method, we present a comparison in
Table 4. The comparison has been done for three different mea-
surement errors viz., ±E = 0.0, 1.0 and 2.0. All runs were carried
out on 2.8 GHz CPU (Pentium� 4 with 248 MB RAM). It is evident
from Table 4 that in the inverse method the CPU time is approxi-
mately 1500 times more than that required in the direct method.
This is due to the reason that in the inverse method, the GA starts
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Fig. 8. Variation of estimated values of the retrieved parameters with number of generati
c = 0.50, population size = 100, (Pc,Pm) = (0.8,0.03).

Table 4
Comparison of CPU times required in the direct and the inverse method for population size

Exact values Estimated values (±E)

(N,b) = (0.01,1.0) (0.0105, 1.0581) 0.0
(0.011, 0.9011) 1.0
(0.0082, 0.8584) 2.0
with a random generation of the initial population. The values of
the estimated parameters corresponding to this initial population
deviates greatly with respect to the actual ones. Thus, to attain
the converged solution, the algorithm has to undergo a series of
generations and for a particular generation, in the GA loop, there
are a number of processes involved. Therefore, in the inverse meth-
od, the CPU time is considerably larger than the direct method.

4. Conclusions

An inverse method was used for simultaneous retrieval of
parameters in a transient conduction–radiation problem with var-
iable thermal conductivity. Two of the parameters such as the
extinction coefficient, the scattering albedo and the conduction–
radiation parameter were simultaneously estimated and they were
compared with their exact values. Effects of different genetic
parameters such as the crossover and the mutation probabilities,
the population size and the number of generations were studied.
Effect of measurement errors on the accuracy of the retrieved
parameters was also investigated. A comparison of CPU times in-
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ons (a) (N,b) = (0.01,1.0), (b) (N,x) = (0.01,0.5) and (c) (b,x) = (1.0,0.5); eE = eW = 1.0,

of 100 and (Pc, Pm) = (0.80, 0.03) for SS temperature h; x = 0.50, eE = eW = 1.0, c = 0.50.

CPU time (s) Ratio of CPU times

Direct method Inverse method

9.781 14799 1513.03
15012 1534.81
15758 1611.08



2758 R. Das et al. / International Journal of Heat and Mass Transfer 52 (2009) 2749–2758
volved in the direct and the inverse method was also done. The
accuracy of the estimated parameters was checked by comparing
the temperature distributions obtained using the direct and the in-
verse method. The LBM–FVM in conjunction with the GA has been
found to provide reasonably good estimates for the unknown
parameters in a transient conduction–radiation problem with tem-
perature dependent thermal conductivity.
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